Utility of rat liver S9 fractions to study skin-sensitizing prohaptens in a modified KeratinoSens assay.
نویسندگان
چکیده
Prohaptens are chemicals, which may cause skin sensitization after being converted into electrophilic molecules by skin enzymes. Aroclor-induced rat liver S9 fractions represent the metabolic activation system most commonly used in in vitro toxicology. This system contains much higher enzyme activities compared with those reported in skin, but it may still serve as a surrogate system to study the potential of chemicals to act as prohaptens. To test this concept, the luciferase induction in KeratinoSens reporter cells treated with chemicals in presence and absence of S9 fractions was measured. Suspected prohaptens such as methyl isoeugenol, eugenol, or trans-anethole gave no, or only weak, ge ne induction in absence of S9 fractions, and a significantly enhanced luciferase induction in presence of S9, proving their prohapten status. Direct-acting haptens like 2,4-dinitrochlorobenzene or cinnamic aldehyde gave a reduced response in presence of S9. We evaluated whether this metabolic activation assay might be implemented in a tiered screening strategy to counter-screen negatives in the KeratinoSens assay to enhance sensitivity. To this aim, all chemicals classified negative were retested with this activation step. Among the 77 chemicals found as correct-negatives, 73 were also negative in presence of metabolic activation, thus this counterscreen would reduce specificity only slightly. However, this comprehensive screening showed that only a small fraction of the known skin sensitizers need activation by the S9 system. Therefore, the KeratinoSens-S9 assay appears useful for the in vitro evaluation of specific classes of potential prohaptens and to mechanistically rationalize their prohapten status.
منابع مشابه
MICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS
Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...
متن کاملInhibition of Microsome-Mediated Binding of Benzo (Α) Pyrene to "Dna By Cytosolic Reaction From Liver And Skin Rats in Cvitro
Purpose: The aim of this study was to evaluate the effect of age on the capacity of liver and epiderm of adult and weanging rats in transformation of Benzo (α) Pyrene. Materials and Methods: In a metabolic activiation assay system, cytochorome P-50 (from microsomal fraction) catalyses the formation of reactive epoxide of BaP which can then interact with exogenous DNA The capacity of cytochrome...
متن کاملAn in vitro assay to screen for the sensitizing potential of xenobiotics.
We are developing a new, animal-free assay for determination of the sensitizing potential of a substance. The design of this assay is based on current immunological knowledge of the pathogenesis of allergic contact dermatitis. It integrates human dendritic cells and keratinocytes, which are both known to be critically involved in vivo. The read-out system uses molecular responses typically occu...
متن کاملSalmonella/human S9 mutagenicity test: a collaborative study with 58 compounds.
A large and extensive body of data on the use of human liver S9 fractions in the Salmonella mutagenicity test (Ames test) is presented; the data were obtained from a collaborative study by JEMS/BMS (Bacterial Mutagenicity Test Study Group) members and the Human and Animal Bridging Research Organization (HAB). In this study, the mutagenicity of 58 chemicals, many of which were judged to be human...
متن کاملCYP3A Mediated Ketamine Metabolism is Severely Impaired in Liver S9 Fractions from Aging Sprague Dawley Rats
Ketamine is widely used in veterinary medicine and in medicine. Ketamine is metabolized to its active metabolite norketamine principally by liver CYP3A. Drug metabolism alterations during aging have severe consequences particularly in anesthesiology and very few studies on older animals were conducted for ketamine. The objective of the present study is to assess the influence of aging on CYP3A ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 135 2 شماره
صفحات -
تاریخ انتشار 2013